
Economics 250 — Hypothesis testing notes

Hypothesis testing

Sometimes what we care about isn’t necessarily the precise value of an estimator, but rather
whether it is significant: in other words, does a sample mean support or contradict some
pre-existing idea about the mean.

For example, suppose I want a mean grade on the first assignment of 74. If I sample some
of the tests, how can I use the sample to test whether the population mean is actually 74?

We call this idea we want to test (“the mean is 74”) a “null hypothesis.”

We denote it as:

H0 : µ = 74

This is something we can never absolutely prove from a sample. We might get a value very
close to 74, but that doesn’t prove the population is 74, it just gives us some evidence that
it is close to 74. The population mean could be 76 for example, and we just happened to
draw a sample with one exceptionally low score that gave us a sample mean of 74.

We also can’t prove absolutely that that it is not 74: even if our sample had a mean of 56,
there is still some small possibility that the sample happened to have some atypical, extreme
values.

If we are willing to allow for a little possibility of making a mistake, what we can do is use
the data to attempt to contradict the null hypothesis with some level of confidence. We
call the contradictory statement the “alternative” hypothesis: it’s simply the opposite (or
contradiction) of the null hypothesis. So our alternative in the example is “the mean is not
74.”

We denote it as:

Ha : µ ̸= 74

We typically write these two statements together:

H0 :µ = 74

Ha :µ ̸= 74

What we do next is calculate a “test statistic” that either rejects or fails to reject the null
hypothesis, H0.

The general idea is that if our sample provides evidence that the population parameter is
sufficiently far away from 74, we can reject the idea that µ = 74, that is, we can reject H0.
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The hypothesis above is called a “two-sided test” because we will reject if we see a value
sufficiently far away from 74 on either side: both large values (e.g. 85) and small values (e.g.
60) provide evidence for rejecting H0 : µ = 74.

We can also do a “one-sided test” where we only reject on one side or the other. An example
of such a test is testing whether the mean is at least 74. Then our hypotheses looks like this:

H0 :µ ≥ 74

Ha :µ < 74

We reject only if we find evidence from our sample that the mean is sufficiently below 74.
Since larger values such as 85 don’t contradict the statement “the mean is at least 74,” we
don’t reject in this situation if we see large values, even if they are much larger than 74.

You can, of course, also perform the test in the other direction (H0 : µ ≤ 74, Ha : µ > 74),
in which case you reject only for large sample means.

Hypothesis testing and confidence intervals

Let’s think about the two-sided test (H0 : µ = 74, Ha : µ ̸= 74). Suppose we take a random
sample of 25 midterms, calculate x, then calculate a confidence interval (as we did in previous
classes). We’ll assume for now that σ is known to us.

Let’s say we get: [75, 79] for our 95% confidence interval. This would allow us to reject our
null hypothesis with 95% confidence: if there’s a 95% chance that this sample came from
a population with mean between 75 and 79, that means the chance that this sample came
from a population with mean 74 is less than 5%.

While confidence intervals are related to hypothesis testing, we usually don’t use confidence
intervals for this; instead we use test statistics.

Test statistics

We’ve already seen one test statistic before: A z-score is a test statistic.

What we want to test is how likely we are to see the value of x we got from our sample if
the null hypothesis is true. For example, if we got x = 77 from our sample, what we want to
know is how likely we are to see a sample mean of x = 77 when the population mean really
is µ = 74.

We can answer this using a z-score, where we use our x value, and the null hypothesis mean
as µ:

z =
x− µ

s.d.(x)
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where s.d.(x) is the standard deviation of our test statistic, x. As we learned in previous
classes this is: s.d.(x) = σ√

n
, so the z-score is:

z =
x− µ

σ/
√
n

Note, however, that some of the statistics we will see later involve a different denominator:
they will have different standard deviation formulas.

We will also sometimes use s.e. instead of s.d. to indicate “standard error” instead of “stan-
dard deviation”: the main difference is that standard error uses an estimate, such as sx,
instead of the population parameter, σx.

Suppose our sample mean is x = 77, from a sample of n = 25, and we know σ = 8. If our
hypothesis is:

H0 :µ = 74

Ha :µ ̸= 74

then we plug in the values to calculate z:

z =
77− 74

8/
√
25

= 1.88

p-values

A test statistic is just a number: what we want to do is convert that number into a probability
that tells us how likely it is that a population with mean µ (i.e. a population where the null
hypothesis is true) would produce a sample mean that gives us the value of our test-statistics.

We call this probability a “p-value”. It is just the probability we’re looking for: how likely
would we be to get a sample value as large (or larger) than the one we found if the null
hypothesis was true?

We already know how to find a number for this when we know the distribution of our test
statistic: it’s just the area under the distribution further out in the tails than the test statistic
we found. For a z-statistic, we use the standard normal (from the textbook’s “Table A”).

(Later on we will see a t-statistic (for which we use “Table D”). The t-distribution is shaped
similarly to a standard normal distribution (i.e. a z-distribution), but with tails that are a
little bit larger.)

The one catch here is that we have to realize that, since we are doing a 2-tailed test, we are
going to reject for very large and very small values. That is, for the z = 1.88 value above,
our probability of getting a value at least as far away from 0 as 1.88 is the area to the right
of 1.88 in the z-distribution, plus the area to the left of -1.88. The reason for this is that we
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only care about how far away we are from 0: both 1.88 and -1.88 are a distance of 1.88 from
0, so we need to add up both tails.

So what we need to calculate is:

P (z ≤ −1.88) + P (z ≥ 1.88)

= P (z ≤ −1.88) + [1− P (z ≤ 1.88)]

= 0.0301 + (1− 0.9699)

= 0.0602

where the third line is just substituting the values from “Table A”.

There is an easier way to calculate this, however: just look up the probability for the
negative z-value (-1.88), then double it. (Since the z-distribution is symmetric, this works.
t-distributions, which we’ll see later, are also symmetric, so we can do this there as well).

Note: for one-tailed tests, we do not do this doubling of probabilities to find the p-values:
there we only care about the probability of a test statistic in one tail, and so only calculate
the probability for one tail.

Reject or not?

In the example above, our p-value was 0.0602. How do we use this to decide whether or not
to reject the null hypothesis?

Before we can decide that, we need to decide on a rejection criterion. This is the answer
to the question “how often are you willing to be wrong?” In other words, how often are we
willing to make a mistake by rejecting H0 when it is actually true?

We denote this criterion as α. It is most common to choose α = 0.05 (that is we allow up
to 5% chance of rejecting when we shouldn’t), but it’s important to realize that this choice
is arbitrary. It was probably originally chosen because it’s a round number that is fairly
small but not too small, and then it stuck. We could also require more certainty by picking
a smaller α (such as α = 0.01), or allow more inaccuracy (but more rejection probability)
by picking a larger α (such as α = 0.1).

α is very closely related to our “confidence level”: a confidence level is simply (1−α)× 100%.
So α = 0.05 is the same thing as having 95% confidence, α = 0.01 is the same thing as 99%
confidence, etc.

Whether we reject or not is simple a matter of determining whether our p-value is above or
below this α threshold. The general rule is that smaller p-values reject: a small p-value tells
us that the probability of getting our test statistic when H0 is true is very small, thus giving
us evidence that H0 is not true.

In the example above, 0.0602 is larger than α = 0.05 so we would fail to reject at the α = 0.05
level (alternatively: fail to reject with 95% confidence). We would similarly fail to reject at
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smaller α levels, such as α = 0.025. If we chose α = 0.1, on the other hand, we would reject
at the α = 0.1 significance level.

A bigger α lets us reject more often, but gives us less confidence in that rejection. Another
way to think about this is that smaller p-values give us stronger evidence that H0 is false.
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