
Economics 250 — Exercise 2 Due 10 November 2016, in class

Remember to include the departmental cover page. You are free to discuss the questions
with classmates, but your answers should be your own.

1 Binomial investment returns [35 points]

An investor is considering the purchase of $1000 of a company’s stock. On any given day,
this investment has only two possible changes in value: an increase of 5% or a decrease of
4%.

The probabilities of changes in the investment’s value are fixed, even if the previous days’
changes are known: the investment will increase in value with probability 0.7 and decrease
with probability 0.3.

Note: For this question, keep at least 4 significant digits when rounding.

a) What is the mean value (also referred to as the “expected value”) of the initial $1000
investment after 1 day? After 2 days?

b) Use the binomial probability formula to find the probability of seeing at least 3 positive
returns in the first 4 days, and find the probability of seeing at least 3 negative returns
in the first 4 days.

c) Find the probability of having exactly two positive returns in the first four days using
two different methods (show your work):

(i) by using your answers to b), and

(ii) by using the binomial probability formula.

d) If the investment value increases on exactly k of the four days, the value of the invest-
ment after four days will be 1000×1.05k0.964−k. Make a table of three rows (and leave
space for a fourth row) showing:

• k, the number of days the investment value increased.

• P (X = k), the probability of each value of k occurring.

• xk, the investment value after exactly k out of four days of increasing value.

e) Use the values in your table to calculate µ4, the expected value of the investment after
4 days.

f ) Suppose that the investor will invest his money for 60 days. Find the probability of:

(i) seeing a positive return on at least half of the days.

(ii) seeing a positive return on 45 or more days.

(iii) seeing fewer than 18 days with negative returns.
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1.1 Answers

a) For one period, this is just the weighted mean: 1000(0.96× 0.3+1.05× 0.7) = 1000(1.023) =
1023

For two periods, this is the same idea, but now there are four possibilities:

• Event 1: Two “bad” days, where the value will equal 1000× .96× .96 = 921.6

• Event 2: One good day followed by a bad day; the final value will equal 1000 ×
1.05× .96 = 1008

• Event 3: One bad day followed by a good day; the final value will equal 1000 ×
.96× 1.05 = 1008

• Event 4: Two good days, after which the value equals 1000×1.05×1.05 = 1102.5

To calculate the expected value, we need to multiple each potential value by the prob-
ability of that value occuring. The probabilities are:

• Event 1: Two bad days: .3× .3 = 0.09

• Event 2: Good then bad: .7× .3 = 0.21

• Event 3: Bad then good: .3× .7 = 0.21

• Event 4: Both good days: .7× .7 = 0.49

(Note that the probabilities add up to 1: always a useful check for a discrete distribution
like this).

The expected value of this discrete distribution is therefore:

E(X) =
4∑

i=1

pixi = .09(921.6) + .21(1008) + .21(1008) + .49(1102.5) = 1046.53

Since the returns are independent and have the same probabilities, you could also use
the binomial formula:

Value: 1000(0.962) = 921.60 1000(0.96× 1.05) = 1008 1000(1.052) = 1102.50
Probability:

(
2
0

)
0.32 = 0.09

(
2
1

)
(0.7)(0.3) = 0.42

(
2
2

)
0.72 = 0.49

Note, however, that the binomial formula doesn’t distinguish between events 2 and 3
(both are 1 increase, 1 decrease): it just has one value with double the probability,
but otherwise the probabilities and values are the same, giving us the same answer:
921.60× 0.09 + 1008× 0.42 + 1102.50× 0.49 = 1046.53.

b) Positive returns:

P (X ≥ 3) = P (X = 3) + P (X = 4) =
(
4
3

)
0.730.3 +

(
4
4

)
0.74 = 0.4116 + 0.2401 = 0.6517

Negative returns: “at least three negative” means the same thing as “at most 1 posi-
tive”:
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P (X ≤ 1) = P (X = 0)+P (X = 1) =
(
4
0

)
0.34+

(
4
1

)
0.7(0.3)3 = 0.0081+0.0756 = 0.0837

You could also get this second number by constructing a new binomial variable, let’s
call it Y , that counts the number of negative returns, with a probability of success now
being 0.3 instead of 0.7. We would then calculate the second one as:

P (Y ≥ 3) = P (Y = 3)+P (Y = 4) =
(
4
3

)
0.33(0.7)+

(
4
4

)
0.34 = 0.0756+0.0081 = 0.0837

c) Since “at least 3”, “at most 1” (or equivalently, “at least 3 negatives”) and “exactly 2”
cover every possible outcome, and are all disjoint, we know their probabilities have to
add up to 1. Therefore:

P (X = 2) = 1− P (X ≥ 3)− P (X ≤ 1) = 1− 0.6517− 0.0837 = 0.2646

Using the binomial probability formula to get the answer:

P (X = 2) =
(
4
2

)
0.720.32 = 6(0.0441) = 0.2646

d) The table is as follows:

k 0 1 2 3 4
xk 849.35 928.97 1016.06 1111.32 1215.51

P (X = k) 0.0081 0.0756 0.2646 0.4116 0.2401

The xk and P (X = k) values are calculated from:

x0 = (1000)1.0500.964 = 849.35 P (X = 0) =

(
4

0

)
0.700.34 = 1(0.0081) = 0.0081

x1 = (1000)1.0510.963 = 928.97 P (X = 1) =

(
4

1

)
0.710.33 = 4(0.0189) = 0.0756

x2 = (1000)1.0520.962 = 1016.06 P (X = 2) =

(
4

2

)
0.720.32 = 6(0.0441) = 0.2646

x3 = (1000)1.0530.961 = 1111.32 P (X = 3) =

(
4

3

)
0.730.31 = 4(0.1029) = 0.4116

x4 = (1000)1.0540.960 = 1215.51 P (X = 4) =

(
4

4

)
0.740.30 = 1(0.2401) = 0.2401

e) The 4-period mean return is then just the sum of each probability times its associated
value:

µ4 = 0.0081(849.35) + 0.0756(928.97) + 0.2646(1016.06)

+ 0.4116(1111.32) + 0.2401(1215.51)

= 1095.22

f ) Since both np and n(1−p) are bigger than 15, we should use the normal approximation
to calculate this.

The approximation is: X ∼ N(np,
√

np(1− p)). Plugging in n and p that gives us:
X ∼ N(42, 3.55)
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Thus our calculation involves calculating and evaluating z-scores:

• At least half the days: P (X ≥ 30) = P (Z ≥ 30−42
3.55

) = P (Z ≥ −3.38) = 1 −
0.0004 = 0.9996

• 45 or more days: P (X ≥ 45) = P (z ≥ 45−42
3.55

) = P (Z ≥ 0.85) = 1 − 0.8023 =
0.1977

• Fewer than 18 with negative means 42 or more with positive days. Since 42 is
the mean, we can answer this straight away: 0.5. (If you want to work out the
calculation: P (X ≥ 42) = P (z ≥ 42−42

3.55
) = P (z ≥ 0) = 1− 0.5 = 0.5.

2 Random Sampling [25 points]

Consider the distribution U(0, 100), which has mean µ = 50.

a) Use Excel for this question. Generate 20 rows of 10 values each, where each value is a
draw from this distribution. For each of the 20 rows, add an 11th value which equals
the mean of the first 10 values. Tip: you can enter the Excel formula =AVERAGE(A1:J1)
to calculate the mean of cells A1 through J1.

Plot these 20 sample means on a histogram, choosing an appropriate bin width.

b) If you repeated this process thousands of times to get thousands of sample means
(each from 10 draws from U(0, 100)), what would you expect the histogram to look
like? Where would you expect the mode to be?

c) If you repeated this process but generated samples of 20 random values instead of 10,
how would you expect the histogram shape to change compared to what you described
in part b)?

d) Suppose you have another distribution, X, for which you do not know the exact distri-
bution, but you do know that X has a mean of 5 and standard deviation of 3. What
will be the distribution of x, the sample mean, for a sample constructed of 25 values
drawn from X?

2.1 Answers

a) Answers will vary; it should look vaguely normal, with most of the observations between
about 30 and 70, but since there are only 20 samples, any given histogram might not
look particularly normal.

The 20 means I got (rounded to 1 decimal places) were:

51.07 38.63 62.42 50.73 58.48 59.95 65.55 67.57 49.81 39.47 63.57 55.08 45.41 49.17
63.69 47.28 57.97 46.66 30.83 56.75

The following is a histogram of these values, using bins of size 5 from 30 to 70.
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b) As you add more and more samples, you should, following the central limit theorem,
get something that gets closer and closer to a normal distribution, centered on the
population mean, µ = 50. Since the mode (the highest point of the density function)
for a normal distribution is at the mean, 50 is the mode as well.

It is not necessary for this assignment, but you could calculate the precise distribution
parameters. See part c), below, for this calculation.

See the answer to the part c), below, for a histogram using 10000 samples (not required
for the assignment).

c) Taking means of 20 values instead of 10 will still be normally distributed and still
centered at µ = 50, but with a lower standard deviation: i.e. there will be more height
in the middle and less in the tails.

It is not necessary for the assignment, but the precise parameters for the normal distri-
butions can be calculated, from the Central Limit Theorem (p. 271 of the textbook):

x ∼ N
(
µ,

σ√
n

)

In this case: µ = 50, n = 10 (part d) or 20 (part e). The variance of a U(a, b) random
variable is: σ2 = (a−b)2

12
, and so the standard deviation of our U(0, 100) is: σ = 100−0√

12
.

Plugging these into the central limit theorem distribution gives us:

x(d) ∼ N
(
50,

1√
10

(
100√
12

))
= N(50, 9.1287)

x(e) ∼ N
(
50,

1√
20

(
100√
12

))
= N(50, 6.4550)

5



The following two histograms use an identical scale for comparison. The left is a
histogram of 10000 sample means of size 10 (for part b)) while the right shows a
histogram for 10000 sample means of size 20, for part e. Also drawn on each diagram
is a normal density curve using the normal parameters calculated above.

(Note that to be able to draw the density curve and histogram on the same graph, you
need to scale the histograms bars to have a total area of 1, measuring densities instead
of frequency. The easiest way to do this in Excel is to divide the histogram counts by
the bin width times the number of observations—in this case, dividing the counts by
2*10000. Alternatively, some more advanced statistics packages can generate density
histograms directly.)
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As is apparent, the distribution for part (e) indeed has more probability mass in the
central regions and smaller tails. Also apparent is that the central limit theorem is
working very well here, even though n is relatively small: the histograms are very close
to the expected normal density curves.

d) This question is simply asking you to use the central limit theorem: even without
knowing the distribution of X, we typically use the assumption that the mean of a
sample from X of size n will be approximately normal, specifically:

N(5, 3/
√
25) = N(5, 0.6)

3 Shoe sizes [40 points]

Based on your statistics training, a shoe company hires you to perform statistical analysis
to help it design and produce a new line of shoe for women. In order to proceed with the
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initial production, the company needs to know how many shoes to make of the various sizes.
You work with the marketing department to identify the most likely customers of the new
shoe and are able to conduct a simple random sample of likely customers whose feet are
measured.

Your sample contains the following sizes (in centimeters):

26.1 25.9 26.2 23.3 25.0 26.2 23.3 26.1
23.5 22.4 25.0 26.1 25.7 22.3 24.9

From this data you calculate the sample mean x = 24.8 and sample standard deviation
s = 1.4467.

a) The designer of the shoes claims that the mean female foot size equals 24.0cm. The
head of the marketing department claims that the mean female foot size is at least
10 inches, that is, 25.4cm. For each of these two claims, write down the null and
alternative hypotheses, using the usual notation.

b) Assuming that you know the true population standard deviation is σ = 1.27, for each
of the two claims:

(i) Calculate a test statistic that will allow you to test the statistical significance of
this claim. What is the distribution of this statistic?

(ii) Find the p-value associated your test statistic. Is this a one-tailed or two-tailed
test?

(iii) Can you reject the claim at the 95% confidence level? At the 99% confidence
level? What is the highest confidence level at which you could reject the claim?

(iv) If you had obtained a test statistic of positive 4.7 instead of what you obtained
for (i), would you reject H0 at the 99% confidence level?

c) Still assuming σ = 1.27, find a 97% confidence interval for the mean shoe size.

d) Now suppose that you do not know σ. For each of the two claims:

(i) Calculate a test statistic that will allow you to test the statistical significance
this claim. What is the distribution of this statistic? Remember to include any
relevant parameters of the distribution in your answer, if appropriate.

(ii) Can you reject the claim at the 90% confidence level? At the 95% confidence
level?

e) Still supposing σ is unknown, find a 95% confidence interval for the mean shoe size.

f ) Calculate the power of the test: H0 : µ = 25.0, Ha : µ ̸= 25.0 with n = 15 and σ = 1.27
at a significance level of α = 0.05 when the true population mean equals 24.0cm.
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3.1 Answers

a) For the “mean is 24cm” claim:

H0 : µ = 24

Ha : µ ̸= 24

and for the “at least 25.4cm” claim:

H0 : µ ≥ 25.4

Ha : µ < 25.4

(You could alternatively write H0 = 25.4 for the latter, as long as the alternative is
still <).

b) (i) 24cm:

z =
x− µ

σ/
√
n
=

24.8− 24

1.27/
√
15

= 2.44

25.4cm:

z =
x− µ

σ/
√
n
=

24.8− 25.4

1.27/
√
15

= −1.83

Both test statistics follow the standard normal distribution, that is, N(0, 1). (This
is sometimes also called the “Z” distribution).

(ii) 24cm:

p = P (Z > 2.44) + P (Z < −2.44) = 2×P (Z < −2.44) = 2(0.0073)

= 0.0146

This is a two-tailed test, hence the two probabilities in the above equation.

25.4cm:

p = P (Z < −1.83) = 0.0336

This is a one-tailed test.

(iii) We can reject both claims at the 95% but not 99% confidence level. For 24cm,
we could reject H0 at up to the 98.54% confidence level, and for the 25.4cm claim
we could reject H0 at up to the 96.64% confidence level.

(iv) For the 24cm case, yes, we would reject H0 because z = 4.7 represents a value far
out on the right tail of the z-distribution.

For the second hypothesis we would not reject H0 because 4.7, even though it
is a large test statistic, it is a large positive test statistic, but for this one-sided
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test, we only reject for large negative test statistics. If you work out the p-value,
you would get a p-value very close to 1, which clearly won’t be rejected for any
sensible value of α.

Another way to think of this: the alternative is about finding evidence of a mean
significantly below 25.4, but getting we can only get a large positive test statistic
if we have a sample mean significantly above 25.4; values above 25.4, however,
don’t give us any evidence in support of the alternative that the population mean
is below 25.4.

c) We need to find the z∗ value that gives us an area of 0.015 in each tail so that the area
of both tails adds up to 0.03.

The associated z∗ value is 2.17. The confidence interval is thus:[
x− z∗

σ√
n
, x+ z∗

σ√
n

]
=

[
24.8− 2.17

1.27√
15

, 24.8 + 2.17
1.27√
15

]
= [24.09, 25.51]

d) With σ unknown, we instead use s, which gives t statistics instead of z statistics:

(i) 24cm:

t =
x− µ

s/
√
n
=

24.8− 24

1.4467/
√
15

= 2.142

25.4cm:

t =
x− µ

s/
√
n
=

24.8− 25.4

1.4467/
√
15

= −1.606

Both statistics follow the t-distribution with n− 1 = 14 degrees of freedom.

(ii) 24cm: Comparing 2.142 to the critical values in the textbook’s “Table D” with 14
degrees of freedom, we see that it bigger than the critical value 1.761 associated
with p = .05, but smaller than the 2.145 critical value for p = 0.025. Since this is
a two-sided test, we have to double these p-values and conclude that our p value
is between 0.05 and 0.1. Thus we can reject H0 at a 90% confidence level but not
at a 95% (or higher) confidence level.

25.4cm: Table D gives us the critical value for upper-tail tests: the lower-tail
critical values are simply the negatives. Since we’re doing a one-tailed test this
time, the critical value we care about for a 90% confidence level is the one for
p = .10, again with 14 degrees of freedom. Since our t-statistic of -1.606 is a larger
negative number than the critical value of -1.345, we can reject the null hypothesis
the 90% confidence level. Since it is not bigger than the p = .05 critical value of
-1.761, we fail reject the null hypothesis at the 95% confidence level.
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e) The confidence interval formula is almost the same as the z version, above, but with
t∗ = 2.145 critical value (from the t-distribution with 14 degrees of freedom, using
p = .025) and using s in place of σ:[

x− t∗
s√
n
, x+ t∗

s√
n

]
=

[
24.8− 2.145

1.4467√
15

, 24.8 + 2.145
1.4467√

15

]
= [24.00, 25.60]

f ) Since this is a two-sided test, we reject H0 if we get a z value above 1.96 or below -1.96.
Plugging in the null hypothesis µ, and the given σ and n values this means we reject
when:

x∗
high − 25

1.27/
√
15

> 1.96

x∗
high > 25.64

or when:

x∗
low − 25

1.27/
√
15

< −1.96

x∗
low < 24.36

The power is then the probability of getting a value of x that is outside these critical
values when µ equals the given alternative, µa = 24:

Power = P (x ≥ x∗
high) + P (x ≤ x∗

low)

= P (
x− µa

σ/
√
n

≥ 25.64− 24

1.27/
√
15

) + P (
x− µa

σ/
√
n

≤ 24.36− 24

1.27/
√
15

)

= P (Z ≥ 5.00) + P (Z ≤ 1.10)

= P (Z ≤ −5.00) + P (Z ≤ 1.10)

= 0.0000 + 0.8643

= 0.8643

In other words, when the true value is actually 24, we have about an 86% chance that
we will reject the (false) null hypothesis that the true value equals 25.

Note that we use the null hypothesis value to calculate the x∗ values; when we calculate
the power, we use the given alternative value, µa: this gives us the probability of getting
a rejected value when the actual population mean equals µa = 24, but the hypothesis
test is for µ = 25.
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